MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

MODEL 4 TRSDOS 6.02.00

UTILITIES PACKAGE

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

Model 4 TRSDOS 6.02.00 Utilities Package: Copyright 1984
Logical Systems, Inc.. Licensed to Tandy Corporation.
A11 Rights Reserved.

BASIC: Copyright 1983 Microsoft.
Licensed to Tandy Corporation. A1l Rights Reserved.

Reproduction or use without express written permission from Tandy
Corporation of any portion of this manual is prohibited. While
reasonable efforts have been taken in the preparation of this manual
to assure its accuracy, Tandy Corporation assumes no liability
resulting from any errors of omissions in this manual, or from the use
of the information contained herein.

10987654321

TRSDOS is a registered trademark of Tandy Corporation.
LDOS is a registered trademark of Logical Systems, Inc.

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

CONTENTS

THTRODUCTION < 5«5 s p s oa 654 5560 2und0emamukhSnsssnmsonnnbnssssehs 5
BB crasssarsssrostbnisbbd bEsPissFRERNRrtsnshnsndsbEs®risesbhas 7
EOIPE s ccronensesesrrraceisi® i Bid s inbistdsavraadsha s tbrdadrssx 11
B OR Y s cxssennaniiasrbacBsdi s sads s sasiiss sebRR AN N ECASASES S & 13
Sorting a Single-Dimension Array...ccececececceccacss 15
Using Secondary Sort ArrayS..eceececcccccescescscoaas 16
Using Multiple Secondary ArrayS...ceececescscescscces 18
Usiig Tag ArvaYE csssranssxsssssnsapnuannansssnsanasss 20
MIOS SOPEIRG cunwosncnsrsrnsesrssrnpsesusnsensnsosness 22
Generating an Index Array.c.eececescecceescosesccsens 24
Sorting 2-Dimensional ArrayS.c.ececeesscceccssccsccssns 26
Using 2-Dinemsional Secondary and Tag ArrayS.c.eceees 28
Using a Variable to Pass the Sort Command.......cc... 30
o 1L 7 S g U . 31
Prografl USa0f.sssssssssasssssusasnansnne ssesssavssans 34
UKILL csssssssasaniransnaoranarssse iaranrassss s o nsssresendiine 43
g sl 3 E T ST U 43
THE BASIC ANSWER USER BUIDE...cssenvsssvusnsnssavssassnsnsnosnnss 45
LHErOUUCT TN cn 0 0 mn wom s s ons mms s s anssnensssess s 45
Creating Source Code.cieeeeeecescceoncccansscncanncas 45
Upper and Lower Case Usage in Source Code.ceeeeeeecns 45
Lreating LabelS.csecsnssssssssncnasssssnansnnsensanvonn 46
Var 18D 188 s ssnsonnsnnsonassnsnnannssannssnassssinsnss 47
Global Definitions and Implementation....ceeeeeennens 48
Local Definitions and Implementation....cceeeeeecnns 48
Array VariableS...eeeeeieeeeeeeceecccccoccocsccsasncas 48
The RER Stalamenl.e.sssussnsnsssnsnsnsnsncsrnvansavans 49
The BASIC RETURN Statement....cceeeeeesccceccenncnnes 49
TBA Directivescvssvsssnonsnsanannrsnasnnosssnssnsnsnns 49
SLArtTng TBR..vsssvsancnsssnansnpnsssnsnsreonsnsnsnny ol
TURIRIAL BUIDE . cxcasannsnasmsns prmnns pxsse e hdsssassasssssens s 52
IHErOgUCTION enasrosmsatpras s srbtrssh v ansEssusass ansss 52
LABBTIE ssnsnnanessnsnpsrnannassessssnapenanynnsssysss 52
Procetdured sssssssrassssnssnssssrasansusronusspssnnns 56

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

FEriBb RS s sassrerssesrnnsiednsntad st Vs eeossenuas RN s 57

Yariable HaBS cassnsvasnrenasssunsvansassasernrspnsns 58

Defining Var abi88.exessassassenssnnenssonpnnonsansns 59

Global versus Local VariableS.ceeeeeeeeeeceeceaacenns 60

Miscellaneous Differences and Information........... 68

KRITING SOURCE CODE.ssssinvsrsnsssssssnnssnnsenssasnsnpaninnsess 69
Using A Word Processor/Text Editor to Write

SOUTCE COUBcsvssxssrsssvassnesrssansnonaasansss 69

Using the BASIC Interpreter to Write Source Code.... 70

Using Directives in Writing Source Code.ceeceeeecens 71

RERLENBS cssqvdsreisenansiviianosssan Vs dosesnybsones 72

LIST O /CPPicssnassvnnsiibaninbetedPeiiesativncive bins 73

WPAAR s avesadaevaididsiivainsd pavseRudentdbrrsnshnstns i 76

BTl TLEcesvunividansvinssunsvsnesssendesdiiendsve s s 78

REFE IR s s e widosaaainanie sodrersdnisbubinn ¢5kds ey 79

KOXDIOSS 10N G w & dwws & 656G &sime oals e s oot oios Siesieths s oies 81

UBINE TBR.¢evdsdivesvissdbdbrensasnavsnii ovenintsbineis vie e 84

Procassing SOUres DollBsasssassnnnnwmsswsenvnnssesy o 84

Error -MesSanBlesissivsnsdanninisrisasnvesinindssissies 88

Sample Screen and Video Output..c.ceeeeeeeeeececacans 99

HOW THE TBA OPERATESussesssansrsrtasisasssassntssdaedanserens 99

GENERAL OPERATIONAL GUIDELINES and PROGRAM MAINTENANCE....... 101

Use of Error-Trapping RoutineS.ceeeeeeeeeceeececanns 191

Enhancing Program Operation and Speed...cececeeecens 192

Use of CHAIN, MERGE, COMMON...vieeereseocococnncnces 104

Maintaining PrROQrERSc s sissisnsnsinnsasdidnesaindvas 110

EXAMPLE PROGRAMS « s ssosistunssnstsssasnvebrbsdissaabuannisnbins 111

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

INTRODUCTION

The TRSDOS 6.2 UTILITIES package is a powerful group of programs that
you use to write other programs. You use some of these utilities with
BASIC programs only.

This package contains the following 6 utility programs:

QFB6, a program that quickly formats and backs up floppy diskettes.
COMP6, a program that lets you compare 2 floppy diskettes or 2

files. You can also use it to compare parts of diskettes or parts of
files.

BSORT, a utility you call from a BASIC program that lets you sort
primary, secondary, tag, and index arrays. Arrays can be
multidimensional, and you can arrange them in ascending or descending
order.

MOD324, a system for transferring Model III BASIC programs to a
Model 4 BASIC form, with a minimum of editing or reprogramming.

UNKILL, a utility for recovering a file that you removed or purged,
but did not yet allocate the space to another file.

TBA, a system that lets you write BASIC programs in a structured
self-documenting manner, and lets you maintain programs easily.

Note: Use these utilities on Model 4 TRSDOS, Version 6.02.0@. Do
not use them on earlier versions of TRSDOS.

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

BLANK PAGE

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

QFB6--QUICK FORMAT AND BACKUP

The QFB6 (Quick Format and Backup) utility lets you create a mirror
image backup of the source disk without first formatting the
destination disk. To use QFB6, you must have 2 floppy drives and a
source diskette formatted with the TRSDOS 6.2 FORMAT utility. The
syntax is:

QFB6 [:1s [:1d [(parameters,...)]

:s indicates the source drive. The colon is optional.
:d indicates the destination drive. The colon is optional.

If you omit source and/or destination drive, QFB6 prompts you
for them.

Parameters:

ALL= specifies whether QFB6 reads and copies all cylinders
of the source disk to the destination disk, or only
allocated cylinders. You can specify the ON/OFF
switch; the default is OFF.

V1= specifies whether QFB6 verifies the destination disk
on the first pass (after it writes each cylinder).
You can specify the ON/OFF switch; the default is on.

V2= specifies whether QFB6 verifies the destination disk
on the second pass (after it writes the complete disk).
You can specify the ON/OFF switch; the default is OFF.

QUERY= prompts for unspecified parameters. You can specify
the ON/OFF switch. The default is OFF.

Abbr: ON=Y, OFF=N, QUERY=Q, ALL=A

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

QFB6 formats and backs up in a single pass. If you omit drives, QFB6
asks you for them. In the command line, :s is the source drive;

:d is the destination drive. If you omit parameters, QFB6 uses the
defaults.

To format and backup, at the TRSDOS prompt, type:
QFB6 1 2 [ENTER]

Drive 1 is the source drive, and Drive 2 is the destination drive.
The screen shows: Load diskettes and press [ENTER]. After you insert
the diskettes and press [ENTER], the backup begins. The following
takes place:

1. QFB6 logs in the source diskette to determine the type
of format.
2. QFB6 formats Cylinder @ of the destination diskette.
3. If Cylinder @ of the source disk contains data, QFB6 reads
it into memory and writes it to the destination diskette.
4, QFB6 verifies Cylinder @ of the destination diskette (the V1
parameter default).
. QFB6 repeats Steps 2-4 for all remaining cylinders.
. The screen shows the following message after QFB6 verifies
the last cylinder:

S Ol

Duplication complete 1 disk created

Replace destination disk and press <ENTER> to repeat
..<R> to restart with new parameters
..0r....<BREAK> to exit program.

MODEL 4 TRSDOS 6.02.0@ UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

7. To terminate the program, press [BREAK]. To make another
backup, press [ENTER]. If you press <BREAK>, the screen
shows :

Load SYSTEM diskette and press <ENTER>

Place a system diskette in Drive @, and press [ENTER] to return
to TRSDOS. The prompt appears even if you run QFB6
from a hard drive, in which case, press [ENTER].

To use QFB6 again with different parameters, type R [ENTER].
QFB6 prompts you for the drives and the parameters.

The screen shows these same prompts (displayed below) if you type the
command QFB6 (Q=Y) [ENTER].

Source drive?

Destination drive?

Duplicate unallocated tracts? (Y/N)
Verify on same pass? (Y/N)

Verify on second pass? (Y/N)

Respond to these questions by typing either Y (Yes) or N (No) and
[ENTER].

The first prompt relates to the ALL parameter. If you answer Yes,
QFB6 reads all cylinders from the source diskette and writes them to
the destination diskette, regardliess of whether or not the cylinder
contains information. If you answer No, QFB6 reads and writes only
cylinders containing information.

The next prompt relates to the V1 parameter. If you answer Yes, QFB6
verifies each cylinder on the destination diskette immediately after
each write. If you answer No, QFB6 does not immediately verify.

The final prompt relates to the V2 parameter. If you answer Yes, QFB6
verifies all cylinders on the destination diskette after it completes
all writes to the diskette. If you answer NO, there is no second pass
verification.

If an error occurs, the screen shows an appropriate error message and
prompts you for an action.

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

During any QFB6 operation, you can press [BREAK] it to terminate the
process.

Note: QFB6 assumes that you want a mirror image backup, and does
not check for data on the destination diskette. It destroys any
existing information on a destination diskette. Also, QFB6 does not
clear the Mod Flags of files on the source disk.

10

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

COMP6--COMPARE PROGRAM
Using a character for character match, this utility compares 2 files
or 2 diskettes to determine if the information is identical. Use COMP6
after a backup or a copy to determine the validity of the data.
Thesyntax is:

COMP6 filespecl [TO] filespec2 [(parameter,...)]
COMP6 :drivel [TO] :drive? [(parameter,...)]

Parameters:

REC= specifies record number at which to start
comparing 2 filespecs (default is 0).

NUM= indicates the number of records of a filespec,
or the sectors of a disk, to compare.

ALL displays each nonmatching byte.
PRINT sends display to *PR and *DO.

CYL= specifies cylinder at which to start comparing
2 drives (default is @).

SEC= specifies sector at which to start comparing
2 diskettes or 2 disks (default is @).

Abbr: REC=R, NUM=N, ALL=A, PRINT=P, CYL=C, SEC=S
This command:
COMP6 MAY/DAT:3 :4 [ENTER]
generates this output:

MAY /DAT:3 contains 17 sectors, EOF offset
MAY /DAT:4 contains 17 sectors, EOF offset

70
70

11

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

With COMP6, a drivespec alone can serve as the second filespec. COMP6
allows this 1 exception to typing a complete filespec. Since the
files are identical, the screen displays the number of sectors
compared followed by the end-of-file offset.

If the files are different, the following occurs:

COMP6 FISCAL82/DAT:3 FISCAL82/DAT:4 (R=4) [ENTER]

Posn= X'000@5,00 FISCAL82/DAT:3 = X'20, FISCAL82/DAT:4 = X'00
29 bytes did not match.
Posn= X'0@@5,B@ FISCAL82/DAT:3 = X'54, FISCAL82/DAT:4 = X'00Q

32 bytes did not match.

FISCAL82/DAT:3 contains 18 sectors, EOF offset
FISCAL82/DAT:4 contains 18 sectors, EOF offset

100
100

Line 1 shows the record number of a discrepant sector, the number of
the first discrepant byte (following Posn=), and the contents of that
byte in each filespec. Line 2 displays the total number of continuous
bytes that do not match. If you specify the ALL parameter, the screen
displays each unmatching byte. By specifying the parameter R=4, the
comparison begins at Record 4.

To compare 1 disk with another, use drive numbers instead of
filespecs. Specify the starting cylinder and sector number either in
hexadecimal (X'@@') format or as a decimal integer. Use the NUM=
parameter to specify the number of continuous sectors to compare.

Unlike file-to-file comparisons, disk-to-disk comparisons display the
currently accessed cylinder, sector, and byte. The source drive (the
first drivespec) reads as much information as possible into memory.
COMP6 then compares this information to the destination drive. If
COMP6 detects discrepant bytes, the screen displays:

Cyl X'@D, Sec X'0@, Byte X'@@, Drive 2 = X'6D, Drive 3 = X'31
3078 bytes did not match.

If you specify the ALL parameter, the screen displays the contents of
each different byte. To send the output to the printer and the
screen, specify the PRINT parameter.

12

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

BSORT--BASIC SORT UTILITY
BSORT is a high speed utility that sorts BASIC arrays. It sorts any
type of array (integer, single- or double-precision, or string),
including 1- and 2-dimensional arrays. To utilize BSORT, use the
following syntax as a line number in your BASIC program.
Note: Integer refers to integer variables or constants.

SYSTEM"RUN BSORT [NUMI,*IND%,[+1[-1PSA[x],[parameter,...]1"

SYSTEM"RUN BSORT $STRVARS"
NUM number of elements to sort, must be an integer.

*IND%(x) single dimension integer array. Use to generate an
index array containing element numbers of the sorted
array. Do not use to reorder elements in the array
you are sorting.

PSA primary sort array name. An optional plus (+) or minus
(-) precedes the array name to indicate ascending (+)
or descending (-) order. If you omit a directional
sign, BSORT assumes ascending order. A type
declaration tag (!,#,$,%) follows the array name.

integer; indicates the first element number you
want to sort (subscript).

| <

13

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

Optional parameters:

SSA(x)

$STRVARS

secondary sort array. A plus (+) or minus (-) precedes
the array name. A type declaration tag follows.

Use a sort key that includes corresponding

information from the primary and secondary arrays.

Any reordering of the primary array causes a
corresponding reordering of the secondary array.

You can use more than 1 array, but if the

secondary array is 2-dimensional, use a subscript.

tag array. Any reordering of the primary array causesa
corresponding reordering in a tag array. A plus or
minus cannot precede a tag array. Specify tag arrays
after secondary array definitions. To specify more
than 1 tag array, separate each with a comma.

mid-string information that indicates the sort key
begins at position s in the string, for n
characters, where s and n are integer numbers.
Valid only with string arrays and immediately
following the array information. Do not use it with
tag arrays.

non-array string variable that contains parameters
for sorting. Use if there are more than 79
characters within the quotation marks.

BSORT performs many different sorting tasks within a BASIC program.
Use established variables and arrays (BSORT cannot allocate memory
for them). You must use a dimensioned array in a sort command. The
following examples illustrate the types of sorts BSORT performs.

14

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

Sorting a Single-Dimension Array

Although you can sort any type of array (integer, single- or
double-precision, or string), sorting the single dimension array is
easiest. To sort a single dimension array, pass 2 parameters--the
number of elements to sort, and the starting position in the primary
sort array--to BSORT. For example, assume the following string array
exists in memory:

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)

et]

To sort this array, enter the following command as a line number in
your BASIC program:

SYSTEM"RUN BSORT 6,+A$(1)" [ENTER]
A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)

The command specifies sorting 6 elements in array A$ (the primary
sort array), and starting to sort at Element 1.

This type of sort reorders elements in ascending order, so that the
value of A$(1) is Tless than A$(2) is less than A$(3), and so on. The
plus sign preceding the primary sort array tells BSORT to reorder the
array in ascending order.

To sort a primary array in descending order, precede the primary sort
array with a minus sign. Execute the sort command by typing:

SYSTEM"RUN BSORT 6,-A$(1)" [ENTER]

Now, the value of A$(1l) is Williams, and the value of A$(6) is Brown.

15

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

In the previous examples, integer constants represent both the number
of elements to sort (6) and the starting string array position (1).
If the variable in the sort command has a type declaration tag, you
can use DEF statements (for example, DEF INT).

You can sort any part of an array for any number of elements. In the
previous examples, if A$ has 7 elements [A$(@) through A$(6)]1, you
can sort Elements 2-5 in ascending order with these commands:

NM%=4:P0%=2
SYSTEM"RUN BSORT NM%,A$(P0%)"

If you sort beyond the dimensions of the array, BSORT returns
an error. In the previous example, if P0% is 2, NM% must be less than
6.

Using Secondary Sort Arrays

You can use more than 1 array to determine the results of a sort
operation. Specify secondary sort arrays after the primary sort

array. BSORT reorders them in conjunction with the primary sort

array, and they help determine direction.

16

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

EXAMPLE (Array A$):
A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

The Array A$ represents a list of last names; the Array F$ contains
the corresponding first names. If the last names are the same, the
first name determines the ascending order. To create a list of these
names in ascending order, use the command below:

SYSTEM"RUN BSORT 6,A$(1),+F$ [ENTER]
A$(1) A$(2) A$(3) AS$(4) A$(5) A$(6)

The Array F$ is a secondary sort array. It determines the sorted
order if a direct match occurs in the primary array. When you specify
a secondary sort array, you assume a direct correlation between
elements in the primary array. If you reorder the primary array, you
reorder the secondary array as well. In the above example, the last
names carry the first names with them to their new position in the
array. If any last names match exactly, the program sorts the first
names.

Separate a single-dimension secondary array from the primary array
with a comma. You do not need a subscript number. The element number
in the primary array determines any reordering. In other words,
Element 1 in the primary array corresponds to Element 1 in the
secondary array. You can use BSORT only to sort the number of
elements that is common to both the primary and secondary array.

17

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

For example, if a primary array has 5@ elements (§-49) and a
secondary array has 10 elements (§-9), you can sort both arrays up to
and including Element 9. Attempting to sort beyond the highest
allowable element number common to both the primary or secondary
array generates error.

Unlike primary arrays, a direction sign [(+) or (-)] is mandatory

when you specify a secondary array. The direction of the sort in a
secondary array does not have to match that in the primary array.

Using the Arrays A$ and F$, the following sort command:

SYSTEM"RUN BSORT 6,+A$(1),-F$" [ENTER]
produces these results:

A$(1) A$(2) AS$(3) A$(4) A$(5) A$(6)

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

Note: The direction of the secondary sort array (in descending

order) does not affect the reordering of the primary array (ascending
order). However, any exact matches in the primary array sorts the
secondary array (first name array) in descending order.

Using Multiple Secondary Arrays

When using more than 1 name, separate secondary arrays with commas.

The order of the array names in the command line determines how the
arrays reorder. In particular, the secondary array specified first

18

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

takes precedence. For example, examine the 3 arrays below:

A$(1) A$(2) A$(3) AS$(4) AS$(5) AS(6) A$(7)

Array A$ contains last names, Array F$ contains first names, and
Array I% contains ID numbers. Consider the results of the command:

SYSTEM"RUN BSORT 7,A$(1),+F$,-I%" [ENTER]
AS(1) A$(2) A$(3) AS$(4) AS(5) A$(6) AS(7)

First, BSORT sorts the last names in ascending order. If the last
names match exactly (as with JONES), BSORT determines the correct
ascending order by referring to the first names in the secondary
array F$. If 2 people have identical first and last names, BSORT uses
the ID number in the secondary array I% to sort the identical names
in descending order.

19

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

If you transpose the arrays on the command line, you get different
results. For example:

SYSTEM"RUN BSORT 7,A$(1),-I1%,+F$" [ENTER]
AS(1) A$(2) A$(3) A$(4) AS(5) A$(6) AS(7)

As in the previous example, the last names sort in ascending order.
However, since the I% array now follows the primary array, the
sorting characteristics of the I% array (ID numbers in descending
order) take precedence over the F$ array. If the names are identical,
the I% array determines their order.

Using Tag Arrays

In addition to using secondary arrays, you can specify tag arrays on
a sort command. If an array (other than the primary array) has no
directional sign, it is a tag array. Tag arrays do not affect the
results of a sort. Any reordering that occurs in the primary sort
array also occurs in a tag array.

If you use both tag and secondary arrays, specify secondary arrays on
the sort command line before tag arrays. If you include more than 1
tag array, separate them with commas.

20

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

If the following arrays are in memory:

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

this command (using F$ as a tag array):
SYSTEM"RUN BSORT 6,A$(1),F$ [ENTER]
can produce these results:

AS(1) A$(2) AS$(3) A$(4) AS$(5) A$(6)

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

BSORT sorts the last names in correct ascending order, but the tag
array F$ does not affect the order in which BSORT arranges the data.
Whenever exact data matches occur (as is the case with the name
JONES) reordering of these elements is random. To sort your
information more precisely, use a secondary sort array. If you want
only to shift information along with the array you sort, use a tag
array.

21

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

MID$ Sorting

When sorting string arrays, you can specify a mid-portion of the
string as the sort key with primary and/or secondary arrays. This
allows you to sort a specified part of the string.

As an example, consider the following 2 string arrays:
L$(D) L$(1) L$(2) L$(3) L$(4)

Array L$ contains a first name initial, followed by a period, a space
and a last name. Array F$ contains the first 2 characters of the last
name, followed by a comma, a space, and the first name. To sort the
array by last name/first name, type:

SYSTEM"RUN BSORT 5,L$(@)(4,7),+F$(5,6) [ENTER]
to achieve these results:

L$(@) L$(1) L$(2) L$(3) L$(4)

L$ is the primary array, and F$ is the secondary array. Both arrays
are in ascending order.

The mid-string information, 2 integer numbers enclosed in
parentheses, immediately follows the subscript for the primary array.
For the secondary array, mid-string information immediately follows
the type declaration tag for the secondary array name. The first
number specifies the position at which to start sorting the

22

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

string--in this case, the fourth character (the first character of
the last name). No comma separates MID$ sort information from the
last piece of information associated with the array.

The second number indicates the number of characters to sort. In this
case, 7/ characters of each string (starting at Position 4 of the
string) comprise the sort key for the primary sort array.

Similarly, mid-string information sorts the secondary array, F$,
beginning at Position 5 (the first character of the first name) in
each element of the array, and extending for 6 characters into each
string.

BSORT does not check the validity of the mid-string values if they
are less than 256. If the position starts at a point exceeding the
entire length of the string, that particular element of the array
receives a null value. If the MID$ position starts within the string,
but uses more characters than remain in the string as sort criteria,
BSORT uses only the remaining characters.

For example, if Array A$ contains these values:

A$(1)="HI 1]
A$(2)="BYE "
A$(3)="THIS IS THE END"

these commands produce the adjacent results:

1. SYSTEM"RUN BSORT 3,A$(1)(1,3)" BYE HI THIS IS THE END
2. SYSTEM"RUN BSORT 3,A$(1)(2,4)" THIS IS THE END HI BYE
3. SYSTEM"RUN BSORT 3,A$(1)(3,2)" HI ~ BYE THIS IS THE END

In Example 1, BSORT uses the first through third characters of each
string to sort the array. In Example 2, BSORT uses the second through
fifth characters of each string to sort the array. In Example 3,
BSORT uses the third to fourth characters of each string to sort the
array. Since the first element has only 2 characters, its sort value
is null; therefore, it appears first in ascending order.

23

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

Generating an Index Array

In some cases, such as reading data into an array from a random
access file, you may not want to physically reorder an array. You
use BSORT to create an index array contains the element numbers of
the sorted array. BSORT reorders the index array so its values
represent the sorted order of the elements in the primary array. For
example, assume that the following arrays are currently in memory:

P$(1) P$(2) P$(3) P$(4) P$(5) P$(6) P$(7)

I%(1) [%(2) I%(3) I%(4) I%(5) I%(6) 1%(7)

This sort command:
SYSTEM"RUN BSORT 7,*I%(1),P$(1)" [ENTER]
creates the index array I%:

I%(1) [%(2) I%(3) 1%(4) I1%(5) I%(6) 1%(7)

Although the sort command does not alter the primary sort array (P$),
the values in the index array (I%) reflect the sorted order of PS$.
For example, I%(1) has a value of 4.

24

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

If you want the ascending, sorted order of Array P$, access Element 4
of Array P$ first. To print the contents of Array P$ in sorted order,
use I% as an index:

FOR L%=1 TO 7 FOR L%=1 TO 7
PRINT PS(I%(L%)) or ME=1%(L%) :PRINT P%(M%)
NEXT L% NEXT L%

To include an index array, specify an asterisk (*), followed by

the index array name after the number of items to sort. The array
must be a l-dimensional, integer-type array with an explicit type
declaration tag. The integer subscript number indicates the starting
position of the indexed formation. The array must be as large as the
number of items it sorts.

The subscript number used with the index array does not necessarily
parallel the subscript number specified in the sorted array. For
example, assume that the following integer array exists in memory:

I%(1) I%(2) I%(3) I%(4) I%(5) I%(6) I%(7) I%(8) I%(9) I%(1@)

Using this as an index array, the following sort command on Array P$:

SYSTEM"RUN BSORT 4,*I1%(6),P$(2)" [ENTER]
produces these results:

I%(1) I%(2) 1%(3) I%(4) I%(5) I%(6) I%(7) I%(8) I%(9) I%(1%)

This command sorts 4 elements (Elements 2-5) of the P$ array, and
stores the index information in the I% array, starting at Element 6.
It does not affect Elements 1-5 and 10, because the index array only
stores the sorted element numbers of the primary array (in this case,

25

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

Elements 2-5). You cannot store index information beyond the end of
the index array.

If the I% array contains 11 elements (@-1¢), this BSORT command
causes error:

SYSTEM"RUN BSORT 4,*1%(8), P$(2) [ENTER]

Finally, you can perform indexed sorts using all of the previously
defined sort parameters (for example, mid-string and secondary
arrays). Once you specify the index array in the sort command, the
syntax remains the same. Because BSORT does not reorder any arrays
used in an index sort, tag arrays are meaningless in the sort
command.

Sorting 2-Dimensional Arrays

The same concepts applicable to 1-dimensional arrays apply to
2-dimensional arrays. To retrieve and sort the key information,
specify a row of the array, and the number of the column at which to
start the sort. The number of columns equals the number of elements
you want to sort. Therefore, reordering an array transposes an entire
column of data.

26

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

For example, assume Array A$ contains:

COLUMN
1 2 3 4 5

1 DALE DAN DON DICK DOC
R 2 BROWN JONES SMITH GREEN PETERS

3 25 34 19 53 42
0 4 BOSTON BUTTE BALT PHIL PITT

5 93021 78654 23376 19769 16511
W 6 MA MT MD PA PA

7 REP REP CLIENT ADV STOCK

To sort this array by last name in ascending order, this BSORT
command :

SYSTEM“RUN BSORT 5,A$(2,1)" [ENTER]

produces these results:

COLUMN
1 2 3 4 5
1 DALE DICK DAN DOC DON
R 2 BROWN GREEN JONES PETERS SMITH
3 25 53 34 42 19
0 4 BOSTON PHIL BUTTE PITT BALT
8 @3@21 19769 78654 16511 23376
W 6 MA PA MT PA MD
7 REP ADV REP STOCK ~ CLIENT

The command indicates there are 5 items to sort; sorting begins at
Column 1 in Row 2, and continues for 5 columns. When BSORT moves

an element, it also moves the elements in the other rows of the same
column.

To exchange positions of Columns 4 and 5 in the original A$ array,
issue the command:

SYSTEM"RUN BSORT 2,A$(5,4)" [ENTER]

27

MODEL 4 TRSDOS 6.92.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

This sort uses information in Row 5 as the key, begins at Column 4,
and includes 2 columns (Columns 4 and 5). Since 16511 is less than
19769, a reordering occurs.

With the A$ array in memory, you can create an index array (I%)
sorting the information in Row 3 in descending order with the
following command:

SYSTEM"RUN BSORT 5,*I(1),-A$(3,1)" [ENTER]
I%(1) I%(2) 1I%(3) 1I%(4) 1I%(5)

When you index a 2-dimensional array, the index array stores the
column position of the sorted array, leaving the sorted array
unchanged.

Using 2-Dimensional Secondary and Tag Arrays

Using 2-dimensional secondary and tag arrays resembles sorting
2-dimensional arrays. There must be at least as many elements in the
secondary or tag array as there are columns in the primary array.

Tag arrays do not need subscripts. Reordering of columns in the tag
array corresponds to reordering in the primary array. The entire
column transposes, no matter how many rows in the array, with any
reordering.

The same reordering rules apply to 2-dimensional secondary arrays.
However, a secondary array requires a subscript indicating the number
of the key information. Assume that the following arrays exist in
memory:

A%(1) A$(2) A$(3) A$(4) A$(5)

28

MODEL 4 TRSDOS 6.02.00

R
0
W

1
2
3

1

PRES
25
DALE

ARRAY BS
COLUMN
'
VP

53
DOC

TANDY COMPUTER PRODUCTS

3

MGR
34
DAN

UTILITIES PACKAGE

4

SALES
42
DICK

5

DIST
19
DON

A$ is the primary array, and Row 3 of B$ is the secondary sort
array. The following BSORT command first sorts the data by last name,
then by first name:

SYSTEM"RUN BSORT 5,A$(1),+B$(3) [ENTER]

=O=>

wWwmnN -

A$(1) A$(2)

A$(3)

A$(4)

A$(5)

SALES
42
DICK

ARRAY B$
COLUMN
2
VP

53
DOC

PRES
25
DALE

MGR
34
DAN

DIST
19
DON

29

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

In a BSORT command, you can use the same 2-dimensional secondary
array more than once, provided you specify a different row in each
case. In fact, if the primary array is 2-dimensional, you can specify
a row other than the primary sort row as a secondary sort array. To
sort a 2-dimensional array (Z$) primarily by last name (Row 2), and
secondarily by first name (Row 1), use the following command:

SYSTEM"RUN BSORT 5,7$(2,1),+Z$(1)" [ENTER]

You can also sort a 2-dimensional secondary array with mid-strings.
As is the case with a 1-dimensional primary array, the mid-string
information immediately follows the row subscript of the secondary
array. For example, in the command:

SYSTEM"RUN BSORT 1@,XX%(2,5),+C$(3)(19,8)" [ENTER]

XX% is the primary array. BSORT sorts 1 columns of Row 2, starting
at Column 5 (Columns 5-14). In C$, the secondary array, you sort
Columns 5-14 in Row 3. The sort key begins at Position 19 of each
element and extends for 8 characters (Columns 19-26).

Using a Variable to Pass the Sort Command

A SYSTEM command cannot exceed 79 characters in the quotation marks.
BSORT allows you to include sort parameters as string variables. The
string variables can contain up to 255 characters.

For example, the following sort command replaces a lengthy number of
parameters with the variable PARMS$:

PARM$ = "1@,*I1%(1),-AA$(4,1)(15,20),+AC#(3),-SD$(7)(13,8)"
SYSTEM "RUN BSORT $PARMS$"

Precede the string variable with a ($) in the system command.

30

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

MOD324--PROGRAM CONVERSION UTILITY

MOD324 converts MODEL III BASIC programs to a form that
MODEL 4 BASIC can read. The MODEL III program must be on a
diskette formatted by either MODEL 4 TRSDOS or MODEL III
LDOS. To move a program from a MODEL III TRSDOS diskette to
a MODEL 4 TRSDOS diskette, use CONV. Store the MODEL III
program on a disk in compressed format. Do not save it in
ASCII.

Note: Some program commands and sequences which function
properly on the MODEL III do not work on the MODEL 4.

MOD324 attempts to flag every possible error situation.
However, it cannot guarantee that a program it converts will
work, even if it does not indicate manual corrections.

The syntax for MOD324 is:

MOD324 filespecl filespec? [(parameter,...)]

filespecl stores MODEL III program to convert in
compressed format. If you omit filespecl,
MOD324 prompts for it.

filespec? contains the converted program. If you omit
filespec2, MOD324 prompts for it. If the
filename already exists, MOD324 overwrites
it. If it does not exist, MOD324 creates it.

Parameters are:

MODIFY adjusts numeric constants in PRINT®@
statements to the corresponding value on the
MODEL 4 video. Does not adjust PRINT TAB
statements.

CENTER[=n] n indicates the additional offset value to
add to all PRINT@ positions changed by
MODIFY. If you include CENTER, you must
include MODIFY. If you omit n, MOD324
assumes 328 (4 lines, 8 columns).

31

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

PRINT sends manual corrections to the printer. If
you omit PRINT, MOD324 displays manual
corrections on the display.

WIDTH[=n] n specifies the number of characters per
printed 1ine when you include PRINT. n may
be an integer in the range 9 to 255. 1If you
omit WIDTH, MOD324 assumes 8@ characters per
printed line.

Parameters may be abbreviated to their first character.

General Information

MOD324 changes tokenized key words and symbols in the MODEL
IIT program to their corresponding ASCII representation in
the MODEL 4 program.

MOD324 removes values specifed in CLEAR statements because
on the MODEL 4, the CLEAR statement functions differently.
For example, MOD324 changes the MODEL III statement, CLEAR
5003 to CLEAR in the MODEL 4 program.

MOD324 inserts a space in MODEL 4 text after key words that
aren't followed by information in parentheses (FOR, TO,
NEXT) and after variables or constants that precede a key
word, but are not separated from the key word by a
terminator. For example, in the statement: IF A%=1@THEN
A%=5, MOD324 inserts a space between the @ and the T.

The maximum Tine length in Model 4 BASIC is 254 characters.
When MOD324 adds additional spaces in a statement, it can
cause the Tine length to exceed this limit. If that occurs,
MOD324 truncates the line and displays the truncated text.
Then, you can create a new line to add to the MODEL 4 BASIC
program that contains the truncated text.

Note: The truncation of a line can affect program logic.

Assume that the following line exists in a MODEL III
program:

32

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

1¢ FORLL=1T01@:FORLK=1TO2@:FORLP=1TO3@:LPRINTTAB(2@)"This
is an example of a converted line being too
Tong" :LPRINTTAB (2@)"The value of LL
is";LL:LPRINTTAB(2@)" The value of 1lk
is";LK:LPRINTTAB(2()"The value of LP
is";LP:NEXTLP :NEXTLK :NEXTLL :PRINTTAB(2@)"Done"

After the conversion MOD324 stores the line in the Model 4
program as:

19 FOR LL=1 TO 1@:FOR LK=1 TO 2@:FOR LP=1 TO 3@:LPRINT
TAB(20)"This 1is an example of a converted line being
too Tong":LPRINT TAB(2@)"The value of LL is";LPRINT
TAB(2@)"The value of 1k is";LK:LPRINT TAB(2@)"The
value of LLP is";LP:NEXT LP:NEXT LK:NEX

MOD324 displays:
The following lines may need manual correction:

1 TAB
13 -Line truncated, should be extended as follows:
T LL:PRINTTAB(2@)"Done"

In a MODEL III program, you may omit the word THEN in an
IF-THEN statement. For example:

IF A=1 A=2

On the MODEL 4 this statement causes a syntax error. MOD324
flags any IF statement not followed by a THEN.

MOD324 does not change information that appears in the MODEL
IIT program file as ASCII, that is enclosed in quotation
marks, or that follows an apostrophe.

Some program statements that exist in MODEL III BASIC have
no meaning on the MODEL 4. Other program statements which
exist in both BASICs function differently in each.

MODEL III commands that MOD324 flags as possibly needing
manual correction are:

43

MODEL 4 TRSDOS 6.92.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

CLOAD POINT

CMD POS

CSAVE PRINT®
ERR PRINT TAB
IF PRINT #-1, PRINT #-2
INP RESET
INPUT #-1, INPUT #-2 SET

NAME SYSTEM
ouT TIMES
PEEK USR

POKE

MOD324 flags every PRINT@ and PRINT TAB statement because
the video sizes differ between the Model III (64x16) and
Model 4 (8@x24). The MODIFY parameter and the number you
specify for CENTER control how MOD324 adjusts values in
PRINT statements.

Program Usage

To convert a program, type MOD324 [ENTER] at the TRSDOS
Ready prompt. MOD324 displays:

Input Filespec?
OQutput Filespec?

A1l entries must follow the rules associated with valid
filespecs. You may press [BREAK] in response to either
prompt to return to TRSDOS Ready. If your answer to these
prompts is incorrect, the screen displays the appropriate
error message.

The first prompt requests the name of the MODEL III program.
Enter the filespec. If you omit adrivespec, MODD324 searches
all active drives. If the file has an extension, include it.
MOD324 does not assume /BAS.

The second prompt requests the name of the file to contain
the converted program. If the filespec does not exist,
MOD324 creates it. If the filespec exists, the converted
program overwrites that file. To assure that the file writes
to the proper place, include a drivespec with the output
filespec. If you omit drivespec, MOD324 writes the output

34

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

file to the first drive containing the file, or to the first
available drive if the file does not exist on any drive in
the system.

You can enter both filespecs on the command line. For
example, if you want to create the MODEL 4 program TEST/M4
on Drive 2 from the MODEL III program TEST/BAS on Drive 1,
enter the following command:

MOD324 TEST/BAS:1 TEST/M4:2 [ENTER]

If you specify 1 filespec on the command line, MOD34 assumes
it is the MODEL III file and prompts for the output
filespec.

Assume that you have created the following MODEL III BASIC
program and saved it in compresssed form under the filespec
SAMPLE /BAS:

10 CLEAR 5(@@:DEFINTA-N:DEFSTRS,T

2@ CLS:FORL = 1T01@

3¢ PRINTTAB (5)"This is Line";L;"on the MOD III
video" ;TAB (45)"Position 45"

4@ NEXT L

To convert this program for use on the MODEL 4 with the
filename SAMPLE /M4 on Drive 2, enter the following command:

MOD324 SAMPLE/BAS SAMPLE/M4:2 [ENTER]

MOD324 creates an ASCII file containing the converted
program and displays possible manual program corrections.
The following is a listing of the file SAMPLE/M4:

19 CLEAR:DEFINT A-N:DEFSTR S,T

20 CLS;FOR L=1 TO 1@

3¢ PRINT TAB (5)"This is Line";L;" on the MOD III
Video" ;TAB(45)"Position 45"

4G NEXT L

In Lines 10, 20 and 3@, MOD324 inserts spaces as needed.
MOD324 does not insert a space in Line 40 because there was
already a space between the T in NEXT and the variable L.
MOD324 strips the value in the CLEAR statement.

35

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

After the conversion, MOD324 displays:
The following lines may need manual correction:
30 TAB,TAB
File output completed

As MOD324 creates the MODEL 4 file, it displays line numbers
that contain possible problem key words. See the previous
list. Commas separate multiple key words on the same line.
In this example, the key words PRINT TAB appear twice in
Line 30. When TAB appears in a manual correction listing,
it implies a PRINT TAB sequence. IF you use TAB with an
LPRINT statement, MOD 324 does not flag it.

After MOD324 creates the MODEL 4 file, you can make manual
corrections. In this example, you can run the program as it
is. However, if MOD324 flags any key words (such as SET)
because they do not exist in MODEL 4 BASIC, remove them.
Modify lines that contain key words which cause
unpredictable results (such as a POKE of video ram).

MODIFY and CENTER Parameters

Consider the following MODEL III program saved in compressed
format as CENTER/BAS. It draws a box on the first 15 lines

of the screen, and displays messages on the last line and in
the middle of the box:

5 CLEAR 2000

19 CLS

20 PRINT@@,CHR$(151) ;STRING$(62,131) ;CHR$(171)
30 PRINT@64,CHR$(149):PRINT@127 ,CHR$(170)
40 PRINT@128,CHR$(149):PRINT@191,CHR$(170)
50 PRINT@192,CHR$(149) :PRINT@255,CHR$(170)
60 PRINT@256,CHR$(149):PRINT@319,CHR$(17@)
70 PRINT@320,CHR$(149) :PRINT@383,CHR$(170)
80 PRINT@384,CHR$(149) :PRINT@447,CHR$(170)
99 PRINT@448,CHR$(149):PRINT@511,CHR$(170)
10@ PRINT@512,CHR$(149) :PRINT@575,CHR$(170)
119 PRINT@576,CHR$(149) :PRINT@639,CHR$(170)
12¢ PRINT@640,CHR$(149) :PRINT@7(3,CHR$(170)

36

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE

TANDY COMPUTER PRODUCTS

13¢ PRINT@7(04,CHR$(149) :PRINT@767,CHR$(170)

13¢ PRINT@768,CHR$(149) :PRINT@831,CHR$(17%)

150 PRINT@832,CHR$(149) :PRINT@895,CHR$(17%)

17¢ PRINT@896,CHR$(181) ;STING$(62,176) ;CHR$(186) ;

175 PRINT@96@,"" ;TAB(15)"Press Any Key to end this
Program";

180 PRINT@473,"Center of Box";

190 I$=INKEY$:IFI$<>""THENEND

200 FORL+1TO3@:NEXTL

210 PRINT@473," "y

220 I1$=INKEY$:IFI$<>""THENEND

230 FORL=1TO2@:NEXTL:G0TO180

The following command converts CENTER/BAS to CENTER/M4:
MOD324 CENTER/BAS CENTER/M4:3 [ENTER]

MOD324 displays:
File CENTER/M4:3
The following lines may need manual correction:

20 PRINTE(D)

30 PRINT@(64),PRINT@(127)
49 PRINT@(128),PRINTE(191)
50 PRINT$(192) ,PRINT@(255)
60 PRINT@(256),PRINT@(319)

140 PRINT@(786),PRINT@(831)
150 PRINT@(832),PRINT@(895)
170 PRINT@(896)

175 PRINT@(96@),TAB

180 PRINT@(473)

210 PRINT@(473)

A1l PRINT@ commands use numeric constants to represent print
positions. If you run CENTER/M4 without performing manual
corrections the program does not draw a box on the screen.

To convert a MODEL III PRINT@ position to a MODEL 4 PRINT@
position:

37

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

1. Divide the Model III positon by 64.

2. Multiply the quotient by 80 and add the remainder
to that product. The result is the MODEL 4 PRINT®@
position.

To convert all PRINT@ positions, use the MODIFY parameter.
The MODEL 4 program contains the adjusted PRINT@ values.

To convert the program CENTER/BAS and include the MODIFY
parameter to convert screen positions, type:

MOD324 CENTER/BAS CENTER/M4:3 (M) [ENTER]
MOD324 displays:

File CENTER/M4:3

The following lines may need manual correction:

20 PRINT@(P=>0)

30 PRINT@(64=>80) ,PRINT@(127=>143)

40 PRINT@(128=>160) ,PRINT@(191=>223)
50 PRINT@(192=>240) ,PRINT@(255=>303)
60 PRINT@(256=>320) ,PRINT@(319=>303)
70 PRINT@(320=>400) ,PRINT@(383=>463)
80 PRINT@(384=>480) ,PRINT@(447=>543)
90 PRINT@(448=>560) ,PRINT@(511=>623)
109 PRINT@(512->640),PRINT@(575=>703)
119 PRINT@(576=>720) ,PRINT@(639=>783)
120 PRINT@(640=>800) ,PRINTC(7(3=>863)
139 PRINT@(704=>88@) ,PRINT@(767=>943)
14¢ PRINT@(768=>960) ,PRINT@(831=>1023)
15¢ PRINT@(832=>1040) ,PRINT@(895=>1103)
17¢ PRINT@(896=>1120)

175 PRINT@(96@=>1200) ,TAB

189 PRINT@(473=>585)

210 PRINT@(473=>585)

The adjustments made to Line 40 translate the original
PRINT@ position of 191 into 223. Running the program
CENTER/M4 draws a box in the upper left corner of the
screen. You do not need to manually correct the PRINT®@
positions. Because PRINT TAB commands (see Line 175) refer
to column position only, MODIFY does not adjust them.

38

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

Because the MODEL 4 screen is larger than the MODEL III screen,
you can overlay a MODEL III screen--up to 8 rows and 16
columns--onto a portion of the MODEL 4 screen. To further adjust
PRINT@ positions use the CENTER parameter with the MODIFY
parameter. The default value for the CENTER parameter is 328 (4
rows, 8 columns).

To convert CENTER/BAS and include the MODIFY and CENTER
parameters to draw the box in the center of the MODEL 4 screen,

type:

MOD324 CENTER/BAS CENTER1/M4:3 (M,C) [ENTER]
MOD324 displays:

File CENTER/M4:3
The following lines may need manual correction:

20 PRINT@(@=>328)

30 PRINT@(64=>408) ,PRINT@(127=471)

49 PRINT@(128=>488) ,PRINT@(191=>551)
50 PRINT@(192=>568) ,PRINT@(255=>631)
60 PRINT@(256=>648) ,PRINT@(319=>711)
70 PRINT@(320=>728) ,PRINTE(383=>791)
80 PRINT@(384=>8¢8) ,PRINTC(447=>871)
99 PRINT@(448=>888),PRINTE(511=>951)
100 PRINT@(512=>968) ,PRINT@(575=>1031
11¢ PRINT@(576=>1048) ,PRINT@(639=>1111)
120 PRINT@(640=>1128) ,PRINTE(7¢3=>1191)
130 PRINT@(7@4=>12@8) ,PRINT@(767=>1271)
149 PRINT@(768=>1288) ,PRINTE(831=>1351)
150 PRINT@(832=>1368) ,PRINT@(895=>1431)
17¢ PRINT@(896=>1448)

17¢ PRINT@(96@=>1528) ,TAB(15=>23)

189 PRINT@(473=>913)

219 PRINT@(473=>913)

In Line 40, the original PRINT@ position of 191 translates into
551, CENTER1/M4 draws a box in the center of the screen (with
the upper left corner of the box positioned at Row 4, Column 8).
The program does not require manual correction because CENTER
adjusts PRINT TAB values.

39

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

The CENTER parameter affects column positioning by moving the
entire screen. It adjusts PRINT TAB commands (see Line 175) by
adding the value of the column offset to the numeric constants in
PRINT TAB statements. If you use @ as a column offset (CENTER=8@,
160, 240, etc.), CENTER does not have to adjust PRINT TABS. To
determine the column offset, divide the value specified with
CENTER by 8@. The remainder after that division is the column
offset.

Although you can use any value with CENTER, some values produce

undesirable results. Avoid offsets of more than 8 rows and/or 16
columns. This table Tlists some practical CENTER value ranges and
the resulting row offset:

CENTER=Range Row Offset
@-16 0
80-96 1

160-176 2

240-256 3

320-336 4

400-416 5

480-496 6

560-576 7

640-656 8

When PRINT@ and PRINT TAB statements use numeric expressions as
print position values, MOD324 does not adjust the values. This
MODEL III program, saved in compressed format as CNTLOOP/BAS,
draws a box on the video using a FOR-NEXT loop.

5 CLEAR 2000

19 CLS

20 PRINT@@,CHR$(151) ;STRING$(62,131) ;CHR$(171)

25 FORL =1T013:Al=L*64:PRINT@A1,CHR$(149):PRINT@AL+63,
CHR$(17@) :NEXTL

17¢ PRINT@896,CHR$(181) ;STRINGS$(62,176;CHR$(186);

172 MC$="Center of Box":MB$="Press Any key to end this
Program"

174 M1=LEN(MC$) :M2=LEN(MBS$) :CM=7*64-(M1/2)

175 PRINT@96@,"" ; TAB((64-M2) /2) ;MBS ;

180 PRINT@CM,MCS;

199 I$=INKEY$:IFI$<>""THENEND

200 FORL=1TO3@:NEXTL

210 PRINT@CM,STRING$(M1,32);

220 I$=INKEY$:IFI$<>""THENEND

230 FORL =1T02@:NEXTL:G0T0180

49

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

To convert this program, type:
MOD324 CNTLOOP/BAS CNTLOOP/M4:3 (M,C) [ENTER]
MOD324 displays:
File CN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>